
TRIBHUVAN UNIVERSITY
INSTITUTE OF ENGINEERING

Khwopa College Of Engineering
Libali, Bhaktapur

Department of Computer and Electronics

A
MAJOR PROJECT

REPORT ON
Nepali AI Chatbot using Deep Learning Model

Submitted in partial fulfillment of the requirements for the degree

BACHELOR OF COMPUTER ENGINEERING

Submitted by
Aabishkar Ghimire KCE077BCT002
Aaryan Raj Daibagya KCE077BCT003
Arun Kumar Shrestha KCE077BCT010
Ayushree Kharel KCE077BCT012

Under the Supervision of
Dr. Ramesh Marikhu

Khwopa College Of Engineering
Libali, Bhaktapur

May, 2025

Copyright

The author has agreed that the library, Khwopa College of Engineering, may make
this report freely available for inspection. Moreover, the author has agreed that per-
mission for the extensive copying of this project report for scholarly purposes may be
granted by the supervisor who supervised the project work recorded herein or, in their
absence, the Head of the Department where the project report was done. It is under-
stood that recognition will be given to the author of the report and to the Department
of Computer Engineering, KhCE, for any use of the material of this project report.
Copying, publication, or other use of this report for financial gain without approval
of the department and the author’s written permission is prohibited. Requests for
permission to copy or to make any other use of material in this report, in whole or in
part, should be addressed to:

Head of Department
Department of Computer Engineering
Khwopa College of Engineering (KhCE)
Liwali,
Bhaktapur, Nepal.

i

Acknowledgement

We would like to thank Dr. Ramesh Marikhu for his wise counsel, inspiring
ideas, and invaluable direction, help, and support throughout this project. We also
owe a debt of gratitude to Er. Dinesh Gothe and Er. Mukesh Kumar Pokharel
for their tireless efforts at every stage of the project, as well as for their insightful
counsel and recommendations.
We are truly grateful for the wisdom and support they have provided us and it is
through their efforts that we have been able to bring this project to fruition. On
behalf of the entire team, we express our sincere thanks and appreciation for their
invaluable contributions.

Aabishkar Ghimire KCE077BCT002
Aaryan Raj Daibagya KCE077BCT003
Arun Kumar Shrestha KCE077BCT010
Ayushree Kharel KCE077BCT012

ii

Abstract

This project aims to develop a generative language model specifically for the Nepali
language, designed for a general-purpose chatbot. Given the limited availability of
large-scale datasets and pretrained models for low-resource languages like Nepali, we
initially built a Nepali language model from scratch using the GPT-2 (124M) archi-
tecture. To enhance its conversational abilities, we further post-trained the model
on a diverse Nepali conversational dataset. This approach enables the chatbot to
understand and generate contextually relevant responses in Nepali. By leveraging
advancements in natural language processing (NLP) and transformer-based architec-
tures, this project addresses the unique linguistic challenges of the Nepali language.
Through improved language inclusivity and conversational AI capabilities, this work
contributes to NLP research and fosters accessibility for Nepali-speaking users.

Keywords: Chatbot, Natural Language Processing (NLP), AI, Machine Learning,
Nepali Language, Transformer, GPT

iii

Contents
Copyright . i
Acknowledgement . i
Abstract . iii
List of Tables . vi
List of Figures . viii
List of Symbols and Abbreviation . ix

1 INTRODUCTION 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Problem Statement . 1
1.4 Objective . 3
1.5 Scope of project . 3

2 LITERATURE REVIEW 4
2.1 NepBERTa: Nepali Language Model Trained on a Large Corpus 4
2.2 NepaliBERT: Pre-training of a Masked Language Model in a Nepali

Corpus . 4
2.3 GPT-2: Language Models Are Unsupervised Multitask Learners 4
2.4 GPT-3: Language Models Are Few-Shot Learners 4
2.5 GPT-4: Advancements in Transformer-Based AI 5
2.6 Claude: Advancing Conversational AI 5
2.7 Algorithm-Based Chatbot Using Transformer and Sequence-to-Sequence

Method . 5
2.8 Gemini: A Family of Highly Capable Multimodal Models 5
2.9 TinyBERT: Distilling BERT for Natural Language Understanding . . . 6
2.10 Scaling Laws for Neural Language Models 6
2.11 Development of Pre-trained Transformer-based models for the Nepali

language . 6

3 THEORETICAL BACKGROUND 9
3.1 Overview of Language Models . 9
3.2 Transformer Architecture . 9
3.3 Pretraining Paradigms . 9
3.4 Challenges in Low‑Resource Languages 10
3.5 Dataset Curation and Preprocessing 10
3.6 Model Configuration and Training . 10
3.7 Evaluation Metrics . 11

4 SYSTEM DESIGN 12
4.1 Requirement Specification . 12

4.1.1 Functional Requirements . 12
4.1.1.1 Natural Language Understanding (NLU) 12
4.1.1.2 Response Generation 12
4.1.1.3 User Engagement . 12
4.1.1.4 Task Execution . 12

iv

4.1.2 Non-Functional Requirements 12
4.1.2.1 Accuracy . 12
4.1.2.2 Speed . 12
4.1.2.3 Scalability . 13
4.1.2.4 Usability . 13
4.1.2.5 Reliability . 13
4.1.2.6 Maintainability . 13

4.2 Feasibility Assessment . 13
4.2.1 Economic Feasibility . 13
4.2.2 Technical Feasibility . 13
4.2.3 Operational Feasibility . 13

4.3 Proposed System Architecture . 14
4.4 Use Case Diagram . 14
4.5 Sequence Diagram . 15
4.6 Class Diagram . 16
4.7 Activity Diagram . 17
4.8 Collaboration Diagram . 18
4.9 Deployment Diagram . 19

5 METHODOLOGY 20
5.1 Training Pipeline . 20

5.1.1 Tokenization . 20
5.1.2 Model . 21

5.1.2.1 Model Parameters (GPT-2 124M Configuration) . . . 23
5.1.2.2 Model Summary . 25

5.1.3 Training Configurations . 26
5.1.3.1 Hyperparameters . 26
5.1.3.2 Loss Function . 26
5.1.3.3 Optimizer . 27
5.1.3.4 Gradient Clipping . 27
5.1.3.5 Learning Rate Scheduling 27
5.1.3.6 Training Performance 28

5.1.4 Cost Optimization . 29
5.1.4.1 Gradient Accumulation 29
5.1.4.2 Mixed Precision Training 29
5.1.4.3 Using Numbers as Powers of Two 30
5.1.4.4 Flash Attention . 30
5.1.4.5 Fused Adam Optimizer 30
5.1.4.6 torch.compile . 30
5.1.4.7 Shared Embedding and lm_head Matrix 30

5.2 Pre-Training . 31
5.2.1 Dataset . 31
5.2.2 Training . 31
5.2.3 Results . 31

5.3 Pretraining Outputs . 32
5.4 Post Training . 33

5.4.1 Dataset . 33
5.4.2 Training . 34

v

5.4.3 Results . 35
5.5 Post-Training Outputs . 36

6 RESULT AND DISCUSSION 37
6.1 Pretraining Results . 37
6.2 Post Training Results . 38

7 EVALUATION AND COMPARISON 40
7.1 Evaluation . 40

7.1.1 Evaluation Setup . 40
7.1.2 Results . 40
7.1.3 Discussion . 40

7.2 Comparison . 41

8 SOFTWARE DEPLOYMENT 42
8.1 Architecture Overview . 42
8.2 Streamlit UI Deployment . 42
8.3 PyTorch Model Serving . 42
8.4 Containerization . 43
8.5 CI/CD Pipeline . 43
8.6 Monitoring & Logging . 43

9 CONCLUSION 44
9.1 Limitations . 44
9.2 Future Enhancements . 44
9.3 Challenges . 45

REFERENCES 47

vi

List of Tables
2.1 Comprehensive Review Matrix for Language Models 8

7.1 Comparison on Training and Validation Loss 41

vii

List of Figures
4.1 System Architecture . 14
4.2 System Use Case Diagram . 14
4.3 Sequence Diagram . 15
4.4 Class Diagram . 16
4.5 Activity Diagram . 17
4.6 Collaboration Diagram . 18
4.7 Deployment Diagram . 19

5.1 Vocabulary generated after training the BPE tokenizer. 21
5.2 Tokenization of a Nepali sentence. 21
5.3 GPT 2 Architecture . 22
5.4 Model Summary . 25
5.5 Cosine Decay Lr Scheduler . 28
5.6 Gradient Accumulation . 29
5.7 Flash Attention Illustration . 30
5.8 Training and validation loss vs. steps. 32
5.9 Full loss curve (pretraining + post-training) 35
5.10 Post-training loss curve . 35

6.1 Pretraining Training and Validation Loss Plot 37
6.2 Full loss curve (pretraining + post-training) 38
6.3 Post-training loss curve . 38

A.1 Pre-Training Dataset . 48
A.2 UI . 50

viii

List of Symbols and Abbreviation
AI Artificial Intelligence
BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pre-trained Transformer
ML Machine Learning
NLP Natural Language Processing
MLM Masked Language Modeling

ix

CHAPTER 1
INTRODUCTION

1.1 Background

The rapid advancement of natural language processing (NLP) technologies, exemplified
by models such as BERT and GPT-3, has largely benefited high-resource languages,
leaving low-resource languages like Nepali underrepresented. Nepali, spoken by mil-
lions but lacking extensive digital resources, faces significant challenges in developing
sophisticated NLP applications. This project aims to create a generative language
model for Nepali language from scratch. By training the model on extensive Nepali
text corpora, it will enable the development of a general-purpose chatbot, improving
conversational AI capabilities in the Nepali language.

This initiative addresses the unique linguistic challenges posed by Nepali, such
as its rich morphology and diverse dialects, while also fostering inclusivity in NLP.
It demonstrates a scalable framework that can be extended to other low-resource
languages, contributing to global advancements in natural language understanding
and generation.

1.2 Motivation

The development of sophisticated natural language processing (NLP) models for the
Nepali language has been markedly limited, significantly hindering the advancement of
digital communication tools in Nepal. Despite the progress in NLP for high-resource
languages, Nepali remains underrepresented, resulting in a substantial gap in language
technology. Multilingual models like mBERT and XLM-R, although designed to sup-
port multiple languages, perform poorly for Nepali due to their reliance on shared
parameters and insufficient Nepali-specific training data.

This inadequacy affects the quality and accuracy of automated systems, including
general-purpose chatbots, which are becoming increasingly important for improving
digital accessibility and communication. To address these challenges, this project
aims to develop a Nepali-specific language model using the GPT architecture. By
leveraging the autoregressive capabilities of GPT, this model will be trained from
scratch on extensive Nepali text corpora, ensuring it captures the unique linguistic
and contextual nuances of the language.

This initiative will not only improve conversational AI for Nepali speakers but
also provide a scalable framework for other low-resource languages. It demonstrates
the potential of advanced language modeling to bridge technological gaps, enhance
inclusivity, and contribute to global advancements in NLP.

1.3 Problem Statement

The lack of advanced natural language processing (NLP) models for the Nepali lan-
guage has resulted in a significant technological gap that hampers the development

1

and accessibility of digital communication tools for Nepali speakers. Existing multilin-
gual models, such as mBERT and XLM-R, exhibit poor performance when applied to
Nepali due to insufficient training data and reliance on shared parameters that fail to
capture the unique linguistic features of the language. This shortfall limits the quality
and effectiveness of conversational AI systems, including general-purpose chatbots,
which are essential for improving user interaction and digital accessibility in Nepal.

To address this issue, there is an urgent need to develop a dedicated Nepali language
model from scratch, leveraging the GPT architecture. Such a model will be trained on
extensive Nepali text corpora to accurately understand and generate text, ensuring it
accommodates the linguistic and contextual nuances of the language. By overcoming
these challenges, this project aims to enhance the conversational AI landscape for
Nepali speakers while contributing to the global efforts in developing NLP solutions
for other low-resource languages.

2

1.4 Objective

The objective of this project is:

• To develop a Nepali Language Generative AI chatbot.

1.5 Scope of project

The major scopes of this project are:

• Develop a Nepali Language model from scratch.

• Train on extensive Nepali text corpora.

• Develop a Nepali Language conversational chatbot.

3

CHAPTER 2
LITERATURE REVIEW

2.1 NepBERTa: Nepali Language Model Trained on a Large
Corpus

In this paper [1], NepBERTa is introduced as a BERT-based model trained on an exten-
sive monolingual Nepali corpus, significantly larger than previous datasets. NepBERTa
has been evaluated on multiple NLP tasks, including Named-Entity Recognition, Con-
tent Classification, POS Tagging, and Categorical Pair Similarity, showing superior
performance compared to both prior monolingual and multilingual models. Addition-
ally, this study introduces Nep-gLUE, the first comprehensive evaluation benchmark
for Nepali language understanding, facilitating further research and development in
this domain.

2.2 NepaliBERT: Pre-training of a Masked Language Model
in a Nepali Corpus

NepaliBERT [2] emphasizes the evolution of natural language processing (NLP) for
Nepali, transitioning from traditional methods like TF-IDF and Word2Vec to advanced
transformer models like BERT. While foundational approaches provided static embed-
dings, recent works leverage BERT for contextual language understanding. Challenges,
such as computational resource limitations and lack of extensive high-quality datasets,
remain significant. This paper demonstrates the potential of leveraging BERT-based
models for creating robust embeddings and improving NLP applications in the Nepali
context.

2.3 GPT-2: Language Models Are Unsupervised Multitask
Learners

GPT-2 [3] introduced a generative pre-trained transformer architecture for autoregres-
sive text generation. By training on extensive corpora and leveraging unsupervised
learning, GPT-2 demonstrated significant improvements in generating coherent and
contextually relevant text. Its architecture was designed for multitask learning with-
out task-specific fine-tuning, making it highly adaptable. GPT-2 laid the foundation
for scaling generative models and showcased the potential of large-scale pretraining
for diverse NLP tasks.

2.4 GPT-3: Language Models Are Few-Shot Learners

GPT-3 [4] builds on GPT-2’s architecture, scaling to 175 billion parameters, making
it one of the largest language models to that date. Its ability to perform tasks in
zero-shot, one-shot, and few-shot scenarios demonstrates significant advancements in

4

language understanding and generation. Despite its superior capabilities, GPT-3 high-
lights challenges such as high computational costs and occasional factual inaccuracies.
Its success underscores the importance of scale and generalization in language models.

2.5 GPT-4: Advancements in Transformer-Based AI

GPT-4 [5] is a state-of-the-art transformer-based model that builds upon its predeces-
sors with significant improvements in language understanding and generation. Trained
with Reinforcement Learning from Human Feedback (RLHF), GPT-4 performs excep-
tionally well across various NLP benchmarks. While it shares limitations like occa-
sional factual inaccuracies and reasoning errors, GPT-4 represents a leap toward more
robust and broadly useful AI systems.

2.6 Claude: Advancing Conversational AI

Claude [6] represents an advancement in conversational AI, leveraging Reinforcement
Learning from Human Feedback (RLHF) and safety-focused fine-tuning. Designed
to produce coherent, safe, and contextually appropriate outputs, Claude focuses on
improving conversational experiences while addressing ethical and safety concerns. Its
iterative training process emphasizes collaboration and safe interaction across diverse
applications.

2.7 Algorithm-Based Chatbot Using Transformer and Sequence-
to-Sequence Method

This paper [7] reviews four main paradigms in chatbot development: Rule-Based Mod-
els, Retrieval-Based Models, Learning-Based Models, and Generative-Based Models.
It proposes a novel architecture based on conditional Wasserstein GAN (cWGAN)
and the transformer model, aiming to overcome sequential constraints and enhance
response accuracy. This work provides a comprehensive overview of chatbot develop-
ment advancements and sets the stage for future innovations.

2.8 Gemini: A Family of Highly Capable Multimodal Models

The ”Gemini: A Family of Highly Capable Multimodal Models” paper [8] introduces
advanced multimodal models—Gemini Ultra, Pro, and Nano—designed for applica-
tions ranging from complex reasoning to on-device tasks. With state-of-the-art perfor-
mance in benchmarks such as language, image, audio, and video understanding, Gem-
ini Ultra achieves human-expert performance on the MMLU benchmark. The paper
emphasizes safety, adversarial testing, and post-training techniques such as supervised
fine-tuning and reinforcement learning with human feedback to ensure responsible de-
ployment.

5

2.9 TinyBERT: Distilling BERT for Natural Language Un-
derstanding

This paper [9] introduces a two-stage transformer-based distillation framework to cre-
ate a smaller, faster version of BERT while maintaining competitive performance.
TinyBERT is particularly useful for deployment in resource-constrained environments,
making advanced NLP capabilities more accessible.

2.10 Scaling Laws for Neural Language Models

This paper [10] explores the scaling laws governing transformer-based language models,
providing insights into the relationship between model size, dataset size, and perfor-
mance. The findings demonstrate that larger models, when trained on adequately
sized datasets, exhibit improved generalization and task performance, forming the
theoretical basis for scaling generative models like GPT-2 and GPT-3.

2.11 Development of Pre-trained Transformer-based models
for the Nepali language

The paper Development of Pre-trained Transformer-based Models for the Nepali Lan-
guage [11] introduces four new pre-trained models, including parameterized models
using BERT [12], RoBERTa [13], GPT-2 124M [3] and GPT-2 124M Instruct. Ac-
cording to the provided data, their pre-trained models outperform existing models in
both the BERT and GPT architectures, achieving better scores on the Nep-GLUE
and ROUGE benchmarks, respectively. Although this study also uses the GPT archi-
tecture, it applies it for data summarization, which differs from our goal of creating
a chatbot. This distinction is important because while both applications leverage the
power of GPT models, the requirements for conversational agents involve more nu-
anced, dynamic interactions compared to the relatively static task of summarization.

6

Title Dataset Size Tasks Evaluated Findings

NepBERTa:
Nepali Lan-
guage Model
Trained in a
Large Corpus

Largest mono-
lingual Nepali
corpus (0.8B
words)

Named-Entity Recog-
nition, Content Clas-
sification, POS Tag-
ging, Categorical Pair
Similarity

Outperformed both mono-
lingual and multilingual
models across all tasks.
Introduced Nep-gLUE
benchmark for comprehen-
sive evaluation.

NepaliBERT:
Pre-training of
Masked Lan-
guage Model in
Nepali Corpus

Over 94 million
tokens

Sentiment Analysis,
Text Summarization,
Document Classifica-
tion

Developed embeddings us-
ing Word2Vec, Doc2Vec,
and BERT architectures.
Created a large dataset by
scraping news data and
combining it with existing
datasets.

GPT-2: Lan-
guage Models
Are Unsuper-
vised Multitask
Learners

40 GB of inter-
net text (Open-
WebText)

Text Generation,
Zero-Shot and Few-
Shot Tasks

Demonstrated coherent
and contextually relevant
text generation without
fine-tuning. Laid the
foundation for scaling gen-
erative models for multitask
learning.

GPT-3: Lan-
guage Models
Are Few-Shot
Learners

570 GB of
internet text
(Common
Crawl, Books,
Wikipedia, etc.)

Language Under-
standing, Text Gen-
eration, Few-Shot
Tasks

Showed exceptional zero-
shot, one-shot, and few-
shot learning abilities, em-
phasizing the importance of
scale and pretraining for
language models. High-
lighted limitations like com-
putational costs and occa-
sional factual inaccuracies.

GPT-4: Ad-
vancements in
Transformer-
Based AI

Not specified

Language Under-
standing, Text Gen-
eration, Reasoning
Tasks

Showed improvements in
reasoning, coding, and
understanding complex
instructions. Despite oc-
casional inaccuracies, it
represents a significant step
forward in AI capabilities.

Claude: Ad-
vancing Con-
versational
AI

Not specified
Conversational AI,
Safety in Generative
Models

Focused on safe and co-
herent conversation genera-
tion. Leveraged RLHF and
safety-focused fine-tuning.
Emphasized responsible AI
deployment in diverse appli-
cations.

7

Algorithm-
Based Chatbot
Using Trans-
former and
Sequence-
to-Sequence
Method

Not specified
Chatbot Develop-
ment, Response
Generation

Proposed a novel archi-
tecture using cWGAN
and transformer model to
improve chatbot response
accuracy and overcome
sequential constraints.
Demonstrated advance-
ments in the chatbot
development paradigm.

Gemini: A Fam-
ily of Highly
Capable Multi-
modal Models

Not specified
Image, Audio, Video,
and Text Understand-
ing, Multimodal Tasks

Achieved state-of-the-art
performance on 30 of 32
benchmarks. Notable for
first human-expert per-
formance on the MMLU
benchmark. Evaluated
extensively for safety
and robustness, ensuring
compliance with safety
standards.

TinyBERT:
Distilling BERT
for Natural
Language Un-
derstanding

Not specified Natural Language Un-
derstanding

Introduced a two-stage
transformer distillation
framework. Achieved com-
petitive performance in
resource-constrained envi-
ronments. Enabled smaller
and faster models.

Scaling Laws
for Neural Lan-
guage Models

Not specified Theoretical Analysis

Explored the relationship
between model size, dataset
size, and performance. Es-
tablished scaling laws that
informed the development
of larger language models
like GPT-2 and GPT-3.

Development
of Pre-trained
Transformer-
based models
for the Nepali
language

27GB Not Specified

Pre-trained BERT,
RoBERTa, GPT-2 124M
models on Nepali text to
generate a comparatively
better result.

Table 2.1: Comprehensive Review Matrix for Language Models

8

CHAPTER 3
THEORETICAL BACKGROUND

3.1 Overview of Language Models

Modern language modeling has evolved from simple frequency‐based methods to deep
neural architectures. Each generation has increased the capacity to capture long‐range
dependencies and richer linguistic patterns.

• Statistical LM: n‑gram models estimate P (wt | wt−1
t−n+1); suffer from data spar-

sity and limited context window [14].

• Neural LM: RNN/LSTM capture longer dependencies [15], but still struggle
with very long sequences.

• Pretrained Transformer: self‑attention enables modeling of all token pairs in
O(n2) time, facilitating deep, scalable LM training [16].

3.2 Transformer Architecture

The transformer uses attention mechanisms to directly connect any two positions in
the input, bypassing recurrence. This enables massive parallelism and stable gradient
flow in very deep models.

• Self‑Attention: queries, keys, values computed as:

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V

allowing each token to attend to all others [16].

• Multi‑Head: multiple parallel attention heads learn complementary represen-
tation subspaces.

• Position Encoding: adds sinusoidal or learned vectors to inject order informa-
tion.

• Layer Norm & Residuals: stabilize training and enable very deep stacks.

3.3 Pretraining Paradigms

Pretraining objectives shape what the model learns about language. Autoregressive
models excel at generation, while masked objectives capture bidirectional context.

• Autoregressive (e.g., GPT): predicts next token wt given w<t; aligns natu-
rally with conversational generation [17].

• Masked LM (e.g., BERT): predicts masked tokens in bidirectional context;
suited for understanding tasks [18].

• Choice for Nepali: autoregressive objective prioritized to support fluent, co-
herent Nepali text generation.

9

3.4 Challenges in Low‑Resource Languages

Nepali lacks the vast, clean corpora available for high‑resource languages. We must
carefully address orthographic variation, tokenization, and domain coverage to build
robust models.

• Data Scarcity: limited publicly available Nepali text; potential domain imbal-
ances.

• Orthographic Variability: spelling variants and Unicode normalization issues
in Devanagari.

• Tokenization: subword methods (BPE/WordPiece) must capture agglutinative
and compound forms [19].

• Domain Coverage: require diverse sources (news, literature, social media) to
improve generalization.

3.5 Dataset Curation and Preprocessing

Building a clean, representative dataset is critical. We gather text from multiple
Nepali‐language sources, then normalize, deduplicate, and tokenize to prepare for
model training.

• Corpus Sources: Nepali Wikipedia dump, news portals, Common Crawl–
filtered Nepali text.

• Cleaning Steps: remove boilerplate, normalize Unicode, deduplicate near‑duplicates.

• Subword Vocabulary: train BPE with 32K–50K merges to balance coverage
versus vocabulary size.

3.6 Model Configuration and Training

Selecting appropriate hyperparameters and optimization strategies ensures stable con-
vergence and strong performance on Nepali text generation.

• Depth & Width: e.g., 24 transformer layers, hidden size 1024, 16 attention
heads.

• Optimization: AdamW with linear warm‑up (10% of steps) and cosine decay
schedule [20].

• Regularization: dropout, weight decay, layer dropout, and gradient clipping
to prevent overfitting and exploding gradients.

10

3.7 Evaluation Metrics

We combine automatic and human evaluations to measure perplexity, fluency, and
task‐oriented performance in Nepali.

• Perplexity: standard held‑out metric for language models.

• Human Evaluation: assess fluency, relevance, cultural appropriateness in
Nepali dialogues.

• Downstream Tasks: test on Nepali question answering, translation quality
(BLEU/ROUGE), and summarization.

11

CHAPTER 4
SYSTEM DESIGN

4.1 Requirement Specification

4.1.1 Functional Requirements

The chatbot must fulfill the following core functional requirements to ensure effective
operation and user interaction:

4.1.1.1 Natural Language Understanding (NLU)

The chatbot should interpret user queries accurately, understand the intent behind
each message, and maintain conversational context. This enables personalized re-
sponses and task execution.

4.1.1.2 Response Generation

The chatbot should generate contextually appropriate responses based on user intent
and extracted information. This will ensure smooth and relevant conversations.

4.1.1.3 User Engagement

The chatbot must engage users through interactive techniques, such as asking ques-
tions, offering suggestions, and responding to feedback. This ensures continuous user
involvement throughout the interaction.

4.1.1.4 Task Execution

The chatbot must be capable of efficiently executing tasks such as retrieving informa-
tion, answering queries, and providing services based on user requests.

4.1.2 Non-Functional Requirements

In addition to functional requirements, the system must also meet the following non-
functional criteria:

4.1.2.1 Accuracy

The chatbot should maintain high accuracy in understanding user queries and gener-
ating responses.

4.1.2.2 Speed

The chatbot must deliver responses quickly to maintain user engagement and satisfac-
tion.

12

4.1.2.3 Scalability

The system must scale to handle increasing user interactions and complex tasks with-
out performance degradation.

4.1.2.4 Usability

The system should be easy to navigate, with clear user interactions and feedback
mechanisms.

4.1.2.5 Reliability

The chatbot must provide consistent, uninterrupted service to ensure high availability
and effective user interactions.

4.1.2.6 Maintainability

The chatbot should be designed with modularity for easy updates and troubleshooting.

4.2 Feasibility Assessment

4.2.1 Economic Feasibility

The project is economically feasible, with minimal upfront costs. The dataset is
sourced from publicly available platforms, and the required computational resources
(laptops and institution-provided GPUs) are already in place.

4.2.2 Technical Feasibility

The technical feasibility is high, as there is access to sufficient data and computational
resources (e.g., GPUs) for training. The complexity of scraping and preparing data is
manageable with available tools.

4.2.3 Operational Feasibility

The system can be integrated into existing workflows with minimal adaptation re-
quired. The user interface will be intuitive, ensuring smooth adoption.

13

Figure 4.1: System Architecture

4.3 Proposed System Architecture

4.4 Use Case Diagram

Figure 4.2: System Use Case Diagram

14

The diagram illustrates the interactions between the primary user, who can ask queries
to the chatbot, and the admin, who configures the chatbot’s knowledge base and
response mechanisms.

4.5 Sequence Diagram

Figure 4.3: Sequence Diagram

A Sequence Diagram illustrates how objects in a system interact over time by showing
the order of messages exchanged between them.The sequence diagram here show the
interaction between the user and chatbot over the time.Here, when the user submits
a query, the chatbot analyzes the query and generates a relevant response based on
what it thinks the user is asking and generate the proper response accordingly.The
generated response may need formatting.The post-processor applies proper indentation
and structuring to make it more readable for the user.

15

4.6 Class Diagram

Figure 4.4: Class Diagram

A Class Diagram visualizes the structure of a system by showing its classes, attributes,
methods, and relationships between them.The Class Diagram here represents the static
structure of a chatbot by showing its main components, their attributes, and methods.
Here, the user class contains user id and username to differentiate different users where
the user can send messages to the model which goes to the chat session. The chat
session contains session id which is for different context the model can get help to
know what the user is talking about. The chat sessions are stored in a database for
future reference.The model generates a response based on the chat session’s context
and the latest user message.

16

4.7 Activity Diagram

Figure 4.5: Activity Diagram

The Activity Diagram illustrates the step-by-step execution of activities in a process.It
includes how the user interacts with the system and how the system processes the query
to generate and return a response.Here,when the user submits a query, it goes to pre-
processor which is responsible for tokenization ,the system extracts relevant context
or retrieves related information if needed and The model generates a response, which
is then post-processed which is then displayed to the user.

17

4.8 Collaboration Diagram

Figure 4.6: Collaboration Diagram

The collaboration diagram illustrates the interaction between the objects in the system
and how messages are transferred between them along with the order of interaction
between the objects.Here, first, the users submit the query which will go to the pre-
processor, which is responsible for tokenization and text normalization before passing it
to the model to make it easier for the model. Then, the model passes the preprocessed
query through the transformer layers multiple times and generates output tokens which
are then displayed with proper formatting.

18

4.9 Deployment Diagram

Figure 4.7: Deployment Diagram

The deployment diagram shows the hardware part of the device where software is
used. It shows how the software is deployed in hardware nodes and represents the
physical architecture along with nodes, containers, components, and artifacts and the
connection between the nodes which shows protocols, message types, and data flow
direction. Here the chatbot, shows how the user device will contain the chat UI and
how it is made up of HTML and CSS. The user device communicates with the model
server using HTTP/HTTPS. Then, the user query is passed into NLP pipelines in the
server which contains the .pt model files which will return the answer accordingly.

19

CHAPTER 5
METHODOLOGY

5.1 Training Pipeline

5.1.1 Tokenization

The tokenization phase involves segmenting text into words or subwords and subse-
quently mapping them to numerical integer representations. In this project, the BPE
tokenizer [21] has been utilized. This approach ensures reproducibility in normaliza-
tion and subword segmentation while converting text into an ID sequence.

The specific tokenization configuration is as follows:

• Vocabulary Size (vocab_size): 50,257 representing the total number of
unique tokens in the vocabulary.

• Character Coverage (character_coverage): 0.9995, ensuring nearly all
characters are included, thereby minimizing the occurrence of unknown tokens.

• Unknown Token ID (unk_id): 1, representing the unknown token.

• Padding Token ID (pad_id): 0, used for sequence padding.

• Beginning-of-Sequence Token ID (bos_id): 2, indicating the start of a
sequence.

• End-of-Sequence Token ID (eos_id): 3, marking the end of a sequence.

• User-Defined Symbols (user_defined_symbols): {"<|im_start|>", "<|im_end|>",
"<|im_sep|>", "<|system|>", "<|user|>", "<|assistant|>"}, introduced
to facilitate structured interactions within the model.

20

Figure 5.1: Vocabulary generated after training the BPE tokenizer.

Figure 5.2: Tokenization of a Nepali sentence.

5.1.2 Model

For the training of the language model, we opted to recreate the GPT-2 124M [3] ar-
chitecture from scratch. GPT-2 is a transformer-based generative model recognized for
its ability to generate coherent and contextually relevant text. Originally introduced
by OpenAI, GPT-2 has demonstrated remarkable capabilities in natural language un-
derstanding and generation across a wide range of tasks. Instead of fine-tuning an
existing model, we train the GPT-2 124M architecture from scratch on our domain-
specific Nepali dataset to ensure effective learning of language structure and context.

All GPT-based models employ an unsupervised pretraining approach on unlabeled
text data. Specifically, GPT-2 is trained using causal language modeling (CLM),
wherein the model predicts the next token in a sequence based on preceding tokens.
Unlike BERT, which learns bidirectional context through masked language modeling
(MLM), GPT models follow an autoregressive training paradigm, processing text se-
quentially from left to right.

The GPT-2 model is built on a Transformer decoder-only architecture, which
leverages self-attention mechanisms to process input sequences in parallel. This ar-
chitecture enables the model to capture long-range dependencies and contextual rela-
tionships effectively, making it well-suited for generating fluent and meaningful text.

21

Figure 5.3: GPT 2 Architecture

22

5.1.2.1 Model Parameters (GPT-2 124M Configuration)

• Configuration:

– Vocabulary size: V = 50304

∗ In model training, we used a vocabulary size of 50,304 instead of the
standard GPT-2 vocabulary size of 50,257. This choice was made be-
cause 50,304 is a multiple of 8, 16, and 32, leading to better performance
due to efficient tensor operations.
The extra vocabulary tokens are never activated as they are not present
in the dataset. Although memory consumption increases slightly, the
overall performance improves due to better hardware utilization.

– Embedding dimension: E = 768

– Number of transformer layers: L = 12

– Feed-Forward hidden size: H = 4E = 3072

• Embedding and Positional Encoding:

– Embedding Layer:
∗ Each token is represented by an E-dimensional vector.
∗ Parameters:

V × E = 50304× 768 = 38 633 472

– Positional Encoding:
∗ Each layer has a positional embedding of size E.
∗ Parameters:

L× E = 12× 768 = 9 216

– Total Embedding-Related Parameters:

38 633 472 + 9 216 = 38 642 688

• Transformer Block (Per Layer):

– Multi-Head Attention:
∗ GPT-2 uses four linear projections (query, key, value, and output),

each with a weight matrix and bias.
∗ Parameters:

4(E2 + E) = 4E2 + 4E

∗ For E = 768:

4×7682+4×768 = 4×589 824+3 072 = 2 359 296+3 072 = 2 362 368

– Feed-Forward Network:
∗ Comprises two linear layers:

· First Linear Layer (fc):

E ×H +H = 768× 3072 + 3072 = 2 359 296 + 3072 = 2 362 368

23

· Second Linear Layer (proj):
H × E + E = 3072× 768 + 768 = 2 359 296 + 768 = 2 360 064

∗ Total Feed-Forward Parameters:
2 362 368 + 2 360 064 = 4 722 432

– Layer Normalization:
∗ Each transformer block uses two layer normalization modules (one be-

fore attention and one before the feed-forward network), with learnable
scale and bias parameters.

∗ Parameters per block:
2× (2E) = 4E = 4× 768 = 3 072

– Total Parameters per Transformer Block:
∗ Summing the components:

Parameters per Block = Multi-Head Attention + Feed-Forward Network
+ Layer Normalization

=
(
4E2 + 4E

)
+
(
2EH + E +H

)
+ 4E

∗ Substituting H = 4E:

=
(
4E2 + 4E

)
+
(
2E(4E) + E + 4E

)
+ 4E

= 4E2 + 4E + 8E2 + 5E + 4E

= 12E2 + 13E

∗ For E = 768:
12×7682+13×768 = 12×589 824+9 984 = 7 077 888+9 984 = 7 087 872

∗ Thus, each transformer block has 7,087,872 parameters.

• Total Transformer Parameters:

– For L = 12 layers:
L× (12E2 + 13E) = 12× 7 087 872 = 85 054 464

– Final Layer Normalization:
∗ Applied after all blocks with 2E parameters:

2E = 2× 768 = 1 536

• Overall Model Parameter Count:

– Summing all components:
Total Parameters = Embedding Layer + Positional Encoding + Transformer Blocks

+ Final Layer Normalization
= (V × E) + (L× E) +

[
L× (12E2 + 13E)

]
+ 2E

= 38 633 472 + 9 216 + 85 054 464 + 1 536

= 123 698 688

– This value approximates the 124M parameters reported for the GPT-2
124M model.

24

5.1.2.2 Model Summary

Figure 5.4: Model Summary

1. Parameter Count Mismatch
During model summary generation, the embedding and output projection layers

were counted separately, even though weight tying was used. This caused the total
parameter count to appear higher than expected. The increase in vocabulary size also
slightly contributes to this.
2. Total Parameters: 163,037,184

This represents the total number of learnable parameters in the model. The in-
creased count results from the separate accounting of tied layers.
3. Trainable Parameters: 163,037,184

All parameters are trainable, meaning the model has full learning capacity but
requires more computation.
4. Non-Trainable Parameters: 0

No frozen layers exist, ensuring that all weights contribute to learning.
5. Total Mult-Adds: 967.56M

This refers to the number of multiplication-addition operations per forward pass.
With nearly 1 billion operations, the model has a high computational cost and benefits
from GPU acceleration.
6. Memory Usage

• Input Size: 0.01 MB – The input storage requirement is negligible.

• Forward/Backward Pass Size: 1261.05 MB – Over 1GB of memory is needed
for activations, making training on GPUs with less than 12GB VRAM difficult.

• Parameter Storage: 652.15 MB – The memory required to store model pa-
rameters.

25

• Estimated Total Size: 1913.21 MB – The model requires nearly 2GB of mem-
ory, necessitating optimizations such as mixed precision training on lower-end
hardware.

5.1.3 Training Configurations

The pretraining and post-training phases of our GPT-2 model utilized an optimiza-
tion strategy that incorporated gradient accumulation, mixed precision training, and
gradient clipping to ensure stable and efficient training.

5.1.3.1 Hyperparameters

The following hyperparameters were used during pretraining:

1. Transformer Layers: 12 layers stacked to enhance the model’s ability to learn
complex representations.

2. Number of Attention Heads: Each transformer layer consists of 12 attention
heads, enabling the model to focus on different parts of the input sequence.

3. Embedding Dimension: Tokens are represented as 768-dimensional vectors.

4. Batch Size: Set to 524,288 for stable gradient estimates while ensuring efficient
memory utilization.

5. Learning Rate: 6e-4, balancing convergence speed and stability.

6. Weight Decay: 0.1, applied as a regularization technique to improve general-
ization.

7. Warm-up Steps: 715 steps to stabilize training and prevent divergence.

8. Optimizer: AdamW with β1 = 0.9 (controls past gradient smoothing) and
β2 = 0.95 (controls squared gradient smoothing).

9. Micro Batch Size: 8, defining the number of samples processed before updating
the gradients.

10. Sequence Length: 1024 tokens, the maximum input size the model can handle
in a single forward pass.

5.1.3.2 Loss Function

The model was trained using the Cross-Entropy Loss, a standard loss function for
language modeling tasks. Given the predicted logits and the actual target tokens, the
cross-entropy loss is computed as:

L = −
∑
i

yi log(ŷi) (5.1)

where yi represents the true token distribution and ŷi represents the predicted
token probabilities. This loss function effectively minimizes the divergence between
the predicted and actual token distributions.

26

5.1.3.3 Optimizer

The optimization process was carried out using the AdamW [22] optimizer, which is
an improved variant of the Adam optimizer with decoupled weight decay regulariza-
tion. This optimizer helps prevent over-regularization and improves convergence. The
weight update rule for AdamW is given by:

mt = β1mt−1 + (1− β1)gt (5.2)
vt = β2vt−1 + (1− β2)g

2
t (5.3)

m̂t =
mt

1− βt
1

(5.4)

v̂t =
vt

1− βt
2

(5.5)

θt = θt−1 −
η√

v̂t + ϵ
m̂t − ηλθt−1 (5.6)

where:

• mt and vt are first and second moment estimates.

• β1 and β2 are decay rates for moment estimates.

• η is the learning rate.

• λ is the weight decay factor.

• gt represents the gradient at time step t.

5.1.3.4 Gradient Clipping

To prevent exploding gradients, the gradient norm was clipped to a maximum value
of 1.0:

θt = θt · min
(
1,

1.0

∥θt∥

)
(5.7)

This technique ensures stable training by limiting excessively large gradient up-
dates.

5.1.3.5 Learning Rate Scheduling

A dynamic learning rate schedule was implemented to ensure stable and efficient train-
ing. The learning rate followed a linear warmup phase followed by a cosine decay
schedule.

Warmup Phase During the first 715 steps, the learning rate increased linearly
from 0 to the maximum learning rate ηmax = 6× 10−4. The learning rate during this
phase was calculated as:

ηt = ηmax ×
t+ 1

warmup_steps (5.8)

where t represents the current training step.

27

Cosine Decay Phase After the warmup phase, the learning rate followed a cosine
decay schedule down to a minimum learning rate ηmin = 0.1 × ηmax over a total of
21,400 steps. The learning rate at step t was given by:

ηt = ηmin+0.5×(ηmax−ηmin)×
(
1 + cos

(
π × t− warmup_steps

max_steps − warmup_steps

))
(5.9)

where:

• ηmax = 6× 10−4 is the maximum learning rate.

• ηmin = 6× 10−5 is the minimum learning rate.

• warmup_steps = 715 defines the warmup period.

• max_steps = 21, 400 determines the total number of training steps.

Final Learning Rate Phase For steps beyond 19,073, the learning rate remained
constant at ηmin, preventing the model from excessive degradation in later training
stages.

This learning rate schedule helped ensure a smooth transition from warmup to
effective training while preventing sudden drops in learning rate, leading to better
model convergence.

Figure 5.5: Cosine Decay Lr Scheduler

5.1.3.6 Training Performance

The training performance was monitored by tracking key metrics such as:

• Training loss and validation loss.

28

• Learning rate updates.

• Gradient norms to ensure stability.

• Processing speed in terms of tokens per second.
This approach ensured efficient and stable training, leading to improved perfor-

mance of the final language model.

5.1.4 Cost Optimization

5.1.4.1 Gradient Accumulation

When training large models, memory constraints often limit the batch size that can
be processed at once. Gradient accumulation addresses this by computing gradi-
ents over several mini-batches and then performing a single weight update. Instead
of updating weights after every mini-batch, gradients are accumulated over multiple
steps, simulating a larger batch size without exceeding memory limits.

Figure 5.6: Gradient Accumulation

5.1.4.2 Mixed Precision Training

Mixed precision training uses both high-precision (32-bit) and low-precision(bfloat16)
arithmetic to speed up computations and reduce memory usage. With torch.autocast,
operations that are safe to compute in lower precision are automatically cast to
bfloat16, while critical operations remain in higher precision to maintain numerical
stability. This results in faster computations and lower memory consumption.

29

5.1.4.3 Using Numbers as Powers of Two

Optimizing array sizes and computational dimensions to be powers of two can lead to
significant performance improvements. Many hardware architectures and algorithmic
implementations (such as FFTs and matrix multiplications) are optimized for power-
of-two sizes, leading to better memory alignment, enhanced caching, and an overall
performance improvement of about 30%.

5.1.4.4 Flash Attention

Flash Attention is an optimized attention mechanism that reduces both the mem-
ory and computational overhead associated with traditional attention operations in
Transformer models. By fusing multiple operations into a single efficient kernel, Flash
Attention minimizes memory reads/writes and intermediate computations, achieving
up to 7.6x speed improvements.

Figure 5.7: Flash Attention Illustration

5.1.4.5 Fused Adam Optimizer

The fused Adam optimizer is an enhanced version of the Adam optimizer that com-
bines multiple element-wise operations into a single GPU kernel call. This fusion
minimizes kernel launch overhead and reduces memory bandwidth usage, leading to
faster and more efficient training compared to the standard Adam implementation.

5.1.4.6 torch.compile

With PyTorch 2.0, torch.compile allows models to be compiled into optimized ma-
chine code. This process converts the model’s computation graph into highly optimized
code through various compiler-level optimizations. The result is streamlined execution
with reduced Python overhead and up to a 2.3x speed improvement.

5.1.4.7 Shared Embedding and lm_head Matrix

In language models like GPT-2, weight tying is applied by sharing the weights between
the input embedding layer and the output projection layer (lm_head). This shared
embedding strategy reduces the total number of parameters by approximately 30%,
saving memory and potentially improving the consistency of word representations dur-
ing both input encoding and output decoding.

30

5.2 Pre-Training

5.2.1 Dataset

We utilized IRIISNEPAL/Nepali-Text-Corpus [11] dataset from Huggingface for
our pre-training. Key details are as follows:

• Dataset Size: 27.5GB

• Dataset Source: News

• Total Rows: 6.39M

• Total Tokens: Approximately 1.9 billion tokens

• Storage Format: Saved as NumPy arrays after tokenization for efficient loading

• Sharding: Each shard contains 100 million tokens

• Data Split:

– Validation Set: First shard (100 million tokens)
– Training Set: Remaining shards (approximately 1.8 billion tokens)

• Validation-to-Training Ratio: Approximately 1:18 (Validation constitutes
about 5.3% of the total data)

5.2.2 Training

We trained the GPT-2 124M model from scratch for 5 epochs. The dataset consists of
1.9 billion tokens, with each batch containing 0.5 million tokens. The training process
spanned 19,000 steps.

Each training step took approximately 8500ms, resulting in a total training time
of 44.86 hours. The average processing speed was 62k tokens per second.

5.2.3 Results

The training process was monitored using a loss vs. steps curve for both training and
validation loss. The validation loss was calculated every 250 steps to make the training
efficient.

31

Figure 5.8: Training and validation loss vs. steps.

5.3 Pretraining Outputs

After pre-training the GPT-2 model with the large corpus, it was proficient at pre-
dicting the next word.

Here are the pre-training outputs with different temperatures:

• Prompt: नमस्ते, म एक भाषा मोडेल हँु,
Temperature: 0.7
Generated: नमस्ते, म एक भाषा मोडेल हँु, म एक अगं्रेजीभाषी मान्छे । म िवद्याथɁ हँुदा मेरो
घरको आँगनमा हुने एउटा अगं्रेजी भाषाको गीत सुनेको ʺथएँ, जसमा मलेै त्यही अगं्रेजीको अनुवाद
बोलेको ʺथएँ । अगं्रेजी

• Prompt: नमस्ते, म एउटा
Temperature: 0.8
Generated: नमस्ते, म एक भाषा मोडेल हँु, जुन नेपालीभाषीको पिहचान र अ˃धकार हो। म
नेपालीभाषीको पिहलो र प्रमुख पिहचान पिन हँु। र, मलाई थाहा छ, मेरो पȼरचय नेपाली भाषाको

• Prompt: नमस्ते, म एउटा
Temperature: 0.9
Generated: नमस्ते, म एक भाषा मोडेल हँु, म एक फरक भाषा अनुवादकको रूपमा छु । त्यसलेै
मलाई ती गुरुहरूले तपाईकंो रचना र प्रेरणाहरूको प्रयोग गररे आफ्नो भाषामा अनुवाद गनर् प्रेȼरत
गनुर्भएको कुरा आज पिन

32

5.4 Post Training

5.4.1 Dataset

We translated UltraChat_200k [23] dataset using google translate to Nepali language
for our post-training. Key details are as follows:

• Dataset Size: 3.5 GB

• Dataset Source: Synthesized using ChatGPT

• Total Conversations: 207,865

• Total Tokens: 0.3B tokens

• Storage Format: Saved as NumPy arrays after tokenization for efficient loading

• Sharding: Each shard contains 60 million tokens

• Data Split:

– Validation Set: First shard (60 million tokens)
– Training Set: Remaining shards (approximately 240 million tokens)

• Validation-to-Training Ratio: Approximately 1:5 (Validation constitutes about
20% of the total data)

33

Below is an example of a formatted input sample for post training:

<|im_start|><|system|><|im_sep|>तपाई ंहकǼ हुनुहुन्छ, एक सहयोगी र मतै्रीपूणर् एआई
सहायक। तपाई ं स्पष्ट र सं˃क्षप्त रूपमा उत्तर िदनुहोस्, तर वातार्लापलाई प्राकृ˃तक बनाउनुहोस्। यिद
प्रयोगकतार्ले तथ्य सोधे भने, सही जानकारी िदनुहोस्। यिद िवचार सोधे भने, तटस्थ रहनुहोस्। स्पष्टता
आवश्यक पर,े ʺशष्ट रूपमा सोध्नुहोस्। हािनकारक, पक्षपाती वा अनै˃ तक उत्तरहरू निदनुहोस्। <|im_end|>
<|im_start|> <|user|> <|im_sep|>नेपालको राजधानी कहाँ छ? <|im_end|> <|im_start|>
<|assistant|><|im_sep|> नेपालको राजधानी काठमाण्डौ हो। <|im_end|>

This example demonstrates the required input structure for the dataset, ensuring
clarity and uniformity in the training data.

5.4.2 Training

We resumed training from the saved checkpoint of the pretraining phase for 5 epochs.
Given that the post-training dataset contains 0.3 billion tokens and each batch com-
prises 0.5 million tokens, the training process spanned 2,400 steps, continuing from
the pretraining step count of 19,000 up to 21,400 steps.

At the same training rate as the pretraining phase, it took 5.67 hours to complete
post-training making the total training time approx. 50.53 hours on 3080ti GPU.

34

5.4.3 Results

The training process was monitored using the same approach as in the pretraining
phase.

Figure 5.9: Full loss curve (pretraining + post-training)

Figure 5.10: Post-training loss curve

35

5.5 Post-Training Outputs

After post-training the GPT-2 pre-trained model with the conversation dataset, it was
ready to answer user queries.

Here are the post-training outputs with different temperatures:

• Prompt: ˃तम्रो नाम के हो?
Temperature: 0.7
Generated: मसँग व्यिक्तगत नाम वा पाठ छैन। यद्यिप, िदइएको जानकारीको आधारमा, िदइएको
जानकारीको आधारमा, यो भन्न सिकन्छ िक जोन ȥस्मथ अङ्ग्रेजी बोल्ने ʺशक्षक ʺथए, जसलाई उनले
मा अगं्रेजी कक्षाको अध्यक्षको रूपमा िनयकु्त गरकेा ʺथए।

• Prompt: ˃तम्रो नाम के हो?
Temperature: 0.8
Generated: मसँग कुनै व्यिक्तगत जानकारी छैन। के तपाई ं िदइएको पाठको आधारमा उसको
नाम के हो भन्ने बारे िवशेष जानकारी प्रदान गनर् सक्नुहुन्छ

• Prompt: ˃तम्रो नाम के हो?
Temperature: 0.9
Generated: मेरो नाम डेʺभड हो, र म तपाईलंाई यसमा मद्दत गनर् पाउँदा खसुी छु। के तपाईसँंग
मेरो हजुरआमाको जन्म िम˃त समावेश गनǼ सुन्दर छुट्टी िबदाको योजना छ

36

CHAPTER 6
RESULT AND DISCUSSION

6.1 Pretraining Results

Figure 6.1: Pretraining Training and Validation Loss Plot

It is evident that both training and validation losses decrease rapidly in the initial
stages, indicating that the GPT2-124M model efficiently learns fundamental linguistic
patterns. At the start of training, the maximum training loss was 10.96, while the
maximum validation loss was 6.35. The lower initial validation loss is attributed to
the fact that validation was first performed after 250 training steps, by which time the
model had already begun learning basic representations.

As training progressed, the losses continued to decrease, with the minimum training
loss reaching 2.5479 and the minimum validation loss reaching 2.9445 over 19,000
steps. The relatively small gap between training and validation losses suggests minimal
overfitting and indicates that the model generalizes well to unseen data. However, the
plateau observed in later stages suggests diminishing returns from continued training
under the current hyperparameter settings.

37

6.2 Post Training Results

Figure 6.2: Full loss curve (pretraining + post-training)

Figure 6.3: Post-training loss curve

During post-training, the dataset was switched to a conversational dataset at 19,000
training steps, resulting in an initial jump in losses, with the training loss increasing
to 4.88 and the validation loss to 4.86. This increase was expected, as the model had
to adapt to a new data distribution.

38

Following this transition, both losses exhibited a rapid decline, indicating that the
model quickly adapted to the new dataset. Over the course of 21,400 post-training
steps, the training loss reached a minimum of 1.93, while the validation loss reached
1.96. The close alignment between training and validation losses suggests effective
learning with minimal overfitting.

Although the loss has significantly decreased, it is still converging, albeit at a
smaller rate. Further training might lead to additional improvements, allowing the
model to refine its understanding of conversational patterns further. Overall, the
post-training phase successfully enhanced the model’s ability to handle dialogue-based
tasks, improving its contextual awareness and response generation capabilities.

39

CHAPTER 7
EVALUATION AND COMPARISON

7.1 Evaluation

7.1.1 Evaluation Setup

To assess the performance of the trained model, we evaluated it on the HellaSwag [24]
validation dataset, a benchmark designed to test commonsense reasoning. Since our
model was trained for Nepali text generation, we translated the dataset into Nepali
using Google Translate to align with the model’s linguistic capabilities.

7.1.2 Results

The model achieved an accuracy of 0.2541, correctly predicting 2,552 out of 10,042
examples. This result indicates that the model successfully captures some degree of
commonsense reasoning but still has room for improvement.

7.1.3 Discussion

The accuracy of 25.41% suggests that the model has learned some meaningful patterns
from the training data but struggles with more complex reasoning tasks. Compared
to state-of-the-art language models, this performance is relatively low, likely due to
several factors:

• Limited Pretraining Data: The model was trained from scratch on a rela-
tively small dataset, which may have limited its ability to develop robust repre-
sentations.

• Translation Artifacts: Since the dataset was translated using Google Trans-
late, potential translation errors or unnatural phrasing might have introduced
noise, affecting performance.

• Model Size: The GPT2-124 architecture is relatively small compared to larger
transformer models, limiting its ability to capture complex relationships within
text.

• Domain Shift: HellaSwag is originally designed for English commonsense rea-
soning, and some cultural or linguistic nuances might not transfer well into
Nepali.

Although the current accuracy is modest, further improvements could be achieved
by additional fine-tuning on high-quality Nepali datasets, employing better translation
techniques, or increasing model capacity. Despite these limitations, the evaluation
demonstrates that the model has learned to some extent and provides a foundation
for future improvements.

40

7.2 Comparison

In this domain, there exists a significant research gap, as most published papers have
not conducted a thorough evaluation of their models. Instead, they primarily report
training and validation loss without providing comprehensive performance metrics.

In contrast, our study includes a comparative analysis between our model and
several well-known models in this field. The following table presents the training and
validation loss for these models:

Model PARAMS Training
Loss

Validation
Loss

distilgpt-nepali [25] 88.2M 3.3968 3.2705
GPT-2 [11] 124M 3.001 -
GPT-2 (Ours) 124M 2.5478 2.9445
GPT-2-Finetuned (Ours) 124M 1.9255 1.9563

Table 7.1: Comparison on Training and Validation Loss

The results in Table 7.1 indicate that our fine-tuned GPT-2 model achieves the
lowest training and validation loss compared to other models. While the base GPT-2
model outperforms distilgpt-nepali, our fine-tuned GPT-2 further improves perfor-
mance, reducing both training and validation loss significantly. This demonstrates
the effectiveness of fine-tuning in enhancing model performance for the given task.

41

CHAPTER 8
SOFTWARE DEPLOYMENT

8.1 Architecture Overview

Before detailing each component, our deployment stack follows a simple client–server
design:

• UI Layer: Streamlit app exposing chat interface and controls.

• Model Layer: PyTorch transformer served via a lightweight API.

• Infrastructure: Docker containers orchestrated on a VM or cloud instance.

• CI/CD & Monitoring: Automated builds, tests, and logs for reliability.

8.2 Streamlit UI Deployment

We chose Streamlit for rapid prototyping and easy browser access.

• App Structure:

– app.py: defines layout, input widgets, and callback logic.
– requirements.txt: pins Streamlit and supporting libs.

• Serving:

– Launch via streamlit run app.py --server.port $PORT$.
– Bind to host 0.0.0.0 for external access.

• UI Features:

– Chat window with scrollback.
– Model‐parameter sliders (e.g. temperature, max tokens).
– Feedback buttons for human evaluation.

8.3 PyTorch Model Serving

The transformer implementation is wrapped in a lightweight REST API.

• Model Loading:

– Load checkpoint in model.py using torch.load().
– Move model to GPU if available, else CPU fallback.

• API Layer:

– Use FastAPI for /generate endpoint.

42

– Accept JSON payload: prompt, generation parameters.
– Return JSON: generated text, latency metrics.

• Error Handling:

– Catch CUDA out‐of‐memory and fallback or return meaningful error code.
– Validate input sizes and types before inference.

8.4 Containerization

Encapsulate UI and model into Docker for consistent environments.

• Dockerfiles:

– Dockerfile.ui: installs Python, Streamlit, copies app.py.
– Dockerfile.api: installs PyTorch, FastAPI/Flask, copies model code and

weights.

• Docker Compose:

– Define two services—ui and api—on a shared network.
– Expose ports (e.g. 8501 for UI, 8000 for API).

8.5 CI/CD Pipeline

Automate builds, tests, and deployments via GitHub Actions.

• Build & Test:

– Lint Python code and run unit tests on commits.
– Build Docker images on merge to main.

• Deployment:

– Push images to Docker registry.
– Trigger rolling update on target server or cloud.

8.6 Monitoring & Logging

Ensure uptime and performance tracking.

• Logs: capture Streamlit and API logs to stdout, aggregate with ELK/Promtail.

• Metrics: collect inference latency, error rates; visualize with Prometheus / Grafana.

• Alerts: set thresholds for high latency or OOM errors to notify maintainers.

43

CHAPTER 9
CONCLUSION

Our study marks a significant advancement in Natural Language Processing (NLP)
for the Nepali language through the pretraining and fine-tuning of a GPT-2-based
model. By leveraging the UltraChat_200k [23] dataset, which have significantly im-
proved the model’s ability to generate contextually relevant, coherent, and natural
responses. This work contributes to the growing demand for language models tailored
to low-resource languages like Nepali, addressing the challenges of limited, high-quality
datasets for conversational AI.

The fine-tuning process has greatly enhanced the model’s ability to perform well
on dialogue-based tasks, including understanding context, managing conversational
turn-taking, and generating appropriate responses. These improvements make the
model a valuable tool for a wide range of applications, such as chatbots. Additionally,
the success of this model underscores the potential for adapting transformer-based
architectures like GPT-2 to underrepresented languages, opening new opportunities
for the development of effective and scalable conversational AI in languages with fewer
resources. This research represents a step forward in bridging the language technology
gap and advancing the field of NLP for Nepali and similar low-resource languages.

9.1 Limitations

• Constrained to a formal, news-like style of language due to its reliance on a
news-based dataset

• The model may struggle to handle regional dialects and informal speech varia-
tions in Nepali.

• Complex inflections and word forms in Nepali might not be fully captured by
the model.

• There are no standard evaluation dataset for Nepali language.

• The validation dataset not has been properly translated. Since English and
Nepali are not directly translatable word-for-word, partial English sentences of-
ten result in completely different Nepali translations, which can confuse the
model.

9.2 Future Enhancements

• Training on a Larger and More Diverse Dataset

• Increasing Model Architecture Parameters

• Enhancing Reinforcement Learning with Human Feedback (RLHF)

• Multimodal Integration

• Optimizing Model Efficiency with LoRA and QLoRA

44

9.3 Challenges

• Nepali has limited annotated datasets, making it difficult to train models with
accurate, diverse, and unbiased text.

• Training high-parameter models requires expensive GPUs/TPUs, which are of-
ten not readily available in low-resource settings.

• Some datasets are translated using Google Translate, which may introduce in-
accuracies, loss of contextual meaning, and biases.

• Unlike high-resource languages, Nepali lacks robust NLP tools, tokenizers, em-
beddings, and benchmarks.

• There is insufficient data for specialized domains like medical, legal, financial,
and technical fields, limiting the model’s effectiveness in real-world applications.

45

REFERENCES
[1] Sulav Timilsina, Milan Gautam, and Binod Bhattarai. NepBERTa: Nepali lan-

guage model trained in a large corpus. In Proceedings of the 2nd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics and
the 12th International Joint Conference on Natural Language Processing, pages
273–284, Online only, November 2022. Association for Computational Linguistics.

[2] Shushanta Pudasaini, Subarna Shakya, Aakash Tamang, Sajjan Adhikari, Sunil
Thapa, and Sagar Lamichhane. Nepalibert: Pre-training of masked language
model in nepali corpus. pages 325–330, 10 2023.

[3] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019. OpenAI.

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[5] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[6] Anthropic. Claude: An ai assistant by anthropic, 2023. https://www.anthropic.
com/index/claude.

[7] Nick Shin and Yanjia Chen. Algorithm-based chatbot using transformer and
sequence to sequence method, 03 2021.

[8] Gemini Team and et al. Gemini: A family of highly capable multimodal models,
2024.

[9] Lifeng Shang Xin Jiang Xiao Chen Linlin Li Fang Wang1 Xiaoqi Jiao1,
Yichun Yin2 and Qun Liu. Tinybert: Distilling bert for natural language un-
derstanding. 16 Oct 2020.

[10] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling
laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

[11] Prajwal Thapa, Jinu Nyachhyon, Mridul Sharma, and Bal Krishna Bal. Devel-
opment of pre-trained transformer-based models for the nepali language, 2024.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. 2018.

[13] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized bert pretraining approach. 2019.

[14] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. Computer Speech & Language, 13(4):359–393, 1999.

46

https://www.anthropic.com/index/claude
https://www.anthropic.com/index/claude

[15] Tomas Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Proceedings of the
11th Annual Conference of the International Speech Communication Association
(INTERSPEECH), page 1045–1048, 2010.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,
2023.

[17] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre‑training. Technical Report 2018-06,
OpenAI, 2018.

[18] Jacob Devlin, Ming‑Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre‑training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics (NAACL), page 4171–4186. Association for
Computational Linguistics, 2019.

[19] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL), page 1715–1725. Association
for Computational Linguistics, 2016.

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. Inter-
national Conference on Learning Representations (ICLR), 2019.

[21] Philip Gage. A new algorithm for data compression. The C Users Journal,
12(2):23–38, 1994.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[23] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan
Liu, Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling
high-quality instructional conversations, 2023.

[24] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hel-
laswag: Can a machine really finish your sentence?, 2019.

[25] Utsav Maskey. Distilgpt2-nepali, 2022. https://huggingface.co/Sakonii/
distilgpt2-nepali.

47

https://huggingface.co/Sakonii/distilgpt2-nepali
https://huggingface.co/Sakonii/distilgpt2-nepali

APPENDIX

Datasets

Figure A.1: Pre-Training Dataset

Post Training Dataset

Interaction

1. User inputs their query.

48

2. Chatbot will generate response as per the query of the user.

49

UI

Figure A.2: UI

50

Plagiarism Report

51

52

53

	Copyright
	Acknowledgement
	Abstract
	List of Tables
	List of Figures
	List of Symbols and Abbreviation
	INTRODUCTION
	Background
	Motivation
	Problem Statement
	Objective
	Scope of project

	LITERATURE REVIEW
	NepBERTa: Nepali Language Model Trained on a Large Corpus
	NepaliBERT: Pre-training of a Masked Language Model in a Nepali Corpus
	GPT-2: Language Models Are Unsupervised Multitask Learners
	GPT-3: Language Models Are Few-Shot Learners
	GPT-4: Advancements in Transformer-Based AI
	Claude: Advancing Conversational AI
	Algorithm-Based Chatbot Using Transformer and Sequence-to-Sequence Method
	Gemini: A Family of Highly Capable Multimodal Models
	TinyBERT: Distilling BERT for Natural Language Understanding
	Scaling Laws for Neural Language Models
	Development of Pre-trained Transformer-based models for the Nepali language

	THEORETICAL BACKGROUND
	Overview of Language Models
	Transformer Architecture
	Pretraining Paradigms
	Challenges in Low‑Resource Languages
	Dataset Curation and Preprocessing
	Model Configuration and Training
	Evaluation Metrics

	SYSTEM DESIGN
	Requirement Specification
	Functional Requirements
	Natural Language Understanding (NLU)
	Response Generation
	User Engagement
	Task Execution

	Non-Functional Requirements
	Accuracy
	Speed
	Scalability
	Usability
	Reliability
	Maintainability

	Feasibility Assessment
	Economic Feasibility
	Technical Feasibility
	Operational Feasibility

	Proposed System Architecture
	Use Case Diagram
	Sequence Diagram
	Class Diagram
	Activity Diagram
	Collaboration Diagram
	Deployment Diagram

	METHODOLOGY
	Training Pipeline
	Tokenization
	Model
	Model Parameters (GPT-2 124M Configuration)
	Model Summary

	Training Configurations
	Hyperparameters
	Loss Function
	Optimizer
	Gradient Clipping
	Learning Rate Scheduling
	Training Performance

	Cost Optimization
	Gradient Accumulation
	Mixed Precision Training
	Using Numbers as Powers of Two
	Flash Attention
	Fused Adam Optimizer
	torch.compile
	Shared Embedding and lm_head Matrix

	Pre-Training
	Dataset
	Training
	Results

	Pretraining Outputs
	Post Training
	Dataset
	Training
	Results

	Post-Training Outputs

	RESULT AND DISCUSSION
	Pretraining Results
	Post Training Results

	EVALUATION AND COMPARISON
	Evaluation
	Evaluation Setup
	Results
	Discussion

	Comparison

	SOFTWARE DEPLOYMENT
	Architecture Overview
	Streamlit UI Deployment
	PyTorch Model Serving
	Containerization
	CI/CD Pipeline
	Monitoring & Logging

	CONCLUSION
	Limitations
	Future Enhancements
	Challenges

	REFERENCES

